Implications of Energy Storage

Stefan Heck

East Asian Alternative Energy Futures Workshop October 2013

CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission of McKinsey & Company is strictly prohibited

McKinsey&Company

We identified energy storage and its applications as one of the twelve game changing clean technologies five years ago

Six technologies have the potential to affect US energy productivity by 2015

Six more technologies should drive change by 2020

Unconve 1 tional oil natural-g producti	n- and Jas on	 In 2011, at \$3 per Mcf and with abundant supply, saves US consumers billions and enables US to reduce its GHG emissions 	 Needs to address disposal challenge reshape global res nomics as Europe India also begin to 	Needs to address water and disposal challenges but can reshape global resource eco- nomics as Europe, China, and India also begin to evaluate and tap their resources		Grid- scale storage	•	\$150-200/kWh grid storage is economical in all major metro areas requiring > 100GW of storage in US by 2020, and making delivery of solar, wind, nuclear & coal much cheaper
		And now the same for oil	tap their resources			Digital power conversion	•	High speed, digital, silicon-carbide switches should be able to deliver same results for less than 1/10th the cost and 1% of the weight and footprint
2 Electric	-	 Rapid battery cost decline from \$1,000/kWh in 2009, to \$500/kWh in 2010, and \$350/kWh in 2012E 	 At \$100/kWh battery cost, EVs will match ICE up front cost. 					
Venicies			and Expected sales of 15-20mn/yr, consumer savings of \$500bn/yr ay and other benefits Zinc may be even better than Li			Compressor- less air conditioning &	•	New compressor-less air-conditioning and electro-chromic window technologies offer the potential to cut home heating and cooling bills in holf1.2
					9			
Advance internal	d	 Current US corporate average fuel standard of 27 Empg will rise to 	 Technology availa Peak gasoline den 	 Technology available today Peak gasoline demand reached in Us in 2000 		chromic windows		
engines	ion	35.5mpg in 2016 and 54.5 in 2025	US IN 2008		10 Clea	Clean	•	Oxycombustion provides retrofit solution. Further clean coal innovations (e.g. using
Solar	Solar	 2011 cost of \$3/watt, down from \$8/watt in 2009. With 40% growth, 2015E cost \$2/w and <\$1/w in 2020 	 At this cost, most new homes and big box commercial businesses in high insolation areas will prefer solar over 		coal		advanced bio-enzymes) could keep most of coal plants in operation for years	
4 Photovo	Itaics						\$8,000-\$10,000/kW current cost of CCS expected to decline to \$2,000/kW	
		In 2011, 100 lumon LED	traditional powers	sources		Bio and	•	At \$100/barrel, biofuels are already growing rapidly. Cellulosic and algae-based biofuels
5 LED	5 LED	 In 2011, 100 lumen LED cost \$20 down from \$50 in 2009 \$8 bulb at 170I/W here in 100 lumen level 	• LED expected to account for 30% of global lighting in 2015 and 80% in 2020, saving consumers \$100bn annually & resulting in	11 Electro- fuels		overcome agrable land constraints. Potential to deliver at \$2/gallon or less by 2020		
Lighting				resulting in				Main question now is scalability of production
		CFL	demand/yr		12	Water	•	80% of world population in areas of water shortage by 2030
		 Lighting accounts for almost 15% of US electricity demand 	 Lighting will integrate wireless, sensors, speakers 			treatment		Water underpriced globally but already causing energy and food shortages
6 Waste		 10x more gold in e-waste than gold ore Municipal waste if 	 Recent Lexus is 90 Aluminum infinitel and 80% cheaper 	0% recyclable y recyclable				and salt water treatment costs into commercial viability by 2020
reeyenné		separated early is a profit center		מות מי אי כוופמאפו				

SOURCE: McKinsey

Energy storage was also highlighted on the McKinsey Global Institute list of technologies with the biggest economic impact over next decade

Mobile Internet

Increasingly inexpensive and capable mobile computing devices and Internet connectivity

Automation of knowledge work

Intelligent software systems that can perform knowledge work tasks involving unstructured commands and subtle judgments

The Internet of Things

Networks of low-cost sensors and actuators for data collection, monitoring, decision making, and process optimization

Cloud technology

Use of computer hardware and software resources delivered over a network or the Internet, often as a service

Advanced robotics

Increasingly capable robots with enhanced senses, dexterity, and intelligence used to automate tasks or augment humans

Autonomous and near-autonomous vehicles

Vehicles that can navigate and operate with reduced or no human intervention

Next-generation genomics

Fast, low-cost gene sequencing, advanced big data analytics, and synthetic biology ("writing" DNA)

Energy storage

Devices or systems that store energy for later use, including batteries

3D printing

Additive manufacturing techniques to create objects by printing layers of material based on digital models

Advanced materials

Materials designed to have superior characteristics (e.g., strength, weight, conductivity) or functionality

Advanced oil and gas exploration and recovery

Exploration and recovery techniques that make extraction of unconventional oil and gas economical

Renewable energy

Generation of electricity from renewable sources with reduced harmful climate impact

Estimated potential economic impact of technologies from sized applications in 2025, including consumer surplus

\$ trillion, annual

Notes on sizing

3.7-10.8

- These estimates of economic impact are not comprehensive and include potential direct impact of sized applications only.
- These estimates do not represent GDP or market size (revenue), but rather economic potential, including consumer surplus.
- Relative sizes of technology categories shown here cannot be considered a "ranking" because our sizing is not comprehensive.
- We do not quantify the split or transfer of surplus among or across companies or consumers. Such transfers would depend on future competitive dynamics and business models.
- These estimates are not directly additive due to partially overlapping applications and/or value drivers across technologies.
- These estimates are not fully risk- or probability-adjusted.

Battery pack price, 2011 Cell materials USD/kWh Cell assembly 560 Pack & BMS Other Material 20 Cell materials are the most significant single price 6 15 Al foil component of the battery 20 26 Cu foil The active materials – anode and cathode – together 34 Electrolyte make up about 50% of the material cost Separator Much of the R&D spending today is focused on increasing 77 Anode the capacity of the active materials Cathode Cells 68 Cell manufacturing Cell manufacturing today is largely not at scale - next generation plants are 10x the capacity of existing plants SG&A, R&D and profit account for about 75% of overhead Cell overhead 130 Full system 55 Battery Management Systems are not yet using fully BMS integrated circuit or component designs Full system 108 • SG&A, R&D and profit account for about 75% of overhead Pack 2011 price

Batteries have come down in cost by 50% in the last 5 years – but are still expensive – about \$25K for Tesla base model

Note: BMS: battery management system

Pack cost could drop to about \$200/kWh by 2020 and to about \$160/kWh by 2025 – with early lab technologies for \$100/kWh in sight

Pack price evolution at 70% depth of discharge Horizon 1 (2011-2015) Horizon 2 (2016-2020) Horizon 3 (2021-2025) **Economies of scale Technology evolution** Continued improvements 560 177 **Price**¹ 383 \$/kWh 186 197 163 34 2011 2015 2020 2025 Manufacturing volumes increase. Manufacturing improves at 3% Manufacturing "What you improves at 3% p.a. spread fixed costs and improve p.a. (rate seen in auto industry) need to manufacturing processes as plants (rate seen in auto Supply chain maturity results in believe" move from 10-20 packs per year to industry) 15% EBIT margins for materials 100k packs/year and lower manufacturing costs Technology sees Supply chain matures as material ~110% improvement in Technology sees ~80% supplier costs decrease and margins cell capacity over today improvement in cell capacity over shrink from today's 20-40% (layered-layer cathode, today (layered-layer cathode, Si Si anode, 4.2V cell Technology improves cell anode) voltage) capacity ~10% Yields improve from 94 to 97% • Yields improve from 90 to 94%

1 Price is to auto OEM for entire vehicle pack assuming 8.7 kWh (PHEV 20) with pack and BMS, 70% depth of discharge, made on US assembly lines

Materials and manufacturing efficiencies will drive most of the price improvements through 2015, technology will be critical thereafter

Material and component cost reductions

Manufacturing and overhead improvements

Technology improvements

Projected prices of lithium-ion battery packs

1 Change from previous horizon (%)

2 Assumes: plant scale of 100,000 battery packs per year; cell capacity increase of 10%; expected materials cost and margin compression

3 Assumes: continuous manufacturing improvement of 6% for BMS and 3% for all other pack elements; cell capacity increases 82% from today; expected materials cost and margin compression

4 Assumes: continuous manufacturing improvement of 6% for BMS and 3% for all other pack elements; cell capacity increases 112% from today

Example: lean techniques could reduce labor costs per cell by 67% in a state of the art battery assembly plant

Medium term technological change is likely to come from three major sources – cathode, anode and electrolyte improvement

Technology ²	Description	Outlook	Institutions involved ¹
Layered-layered cathode material	 Nano-structured cathode materials allow for higher energy densities 	 Looked on as promising by all OEMs; BASF and LG Chem both licensed Argonne patent – BASF is building a factory in Ohio to commercialize 	Argone Lucian Education LG Chem De BASE The Chemical Company
Silicon anodes	 Silicon can carry more Li+ ions per mole than graphite, and therefore has higher energy densities 	 Likely by 2013 in consumer electronics, but major technical issues around swelling and material stability exist that industry experts expect will delay automotive inclusion until post-2015 	Ampriles Panasonic.
High-voltage electrolytes	 Higher-voltage- capable electrolytes allow for higher cell densities 	 Strong research focus in Korea and Japan in this particular area, because of its large capacity benefits. Improvement by 2020 not clear – DOE predicts will reach market post-2020. 	EG Chem SAMSUNG SDI SAMSUNG SDI SYSTEMS

1 Not exhaustive

Our views on technology development generally aligns with the US DOE, but are slightly more conservative around electrolyte development

Key difference

Component	Anode	Electrolyte	Cathode	
Today's technology	300 mAh/gGraphiteHard carbon	4 voltLiquid organic solvents and gels	 120-160 mAh/g Layered oxides Spinels Olivines 	
Next generation	 600 mAh/g Intermetallics (Si) and new binders Nanophase metal oxides Conductive additives Tailored SEI 	 5 volt High-voltage electrolytes Electrolytes for Li metal Nonflammable electrolytes 	 300 mAh/g Layered-layered oxides Metal phosphates Tailored surfaces 	
DOE timeline	2016-2020	Pre-2020	2015	
McKinsey timeline	2016-2020	Post-2020	2016-2020	

SOURCE: DOE Vehicle Technologies Program 2011 Annual Merit Review

Various Horizon 3 technological approaches exist in the lab – we have assumed only high-voltage electrolytes are commercialized

Technology		Specific energy ¹ (Wh/kg)	Advantages	Limitations				
	High-voltage electrolytes	N/A – voltage change only	 Key to many other innovations, such as lithium metal 	 Have been tried but don't exist in stable form yet 				
	Advanced Lithium- Ion Intercalation	900	 Well understood underlying chemistry Adopt existing processes 	 Improved electrolytes Better surface electrolyte interface needed 				
	Non-Lithium Intercalation	1,250	 Potentially higher specific energy than Li-ion cells 	 Theoretical potential is controversial amongst chemists 				
	Lithium-Metal (with intercalation cathodes)	1,060	 Can use existing cathode materials Eliminate cell fade 	 Safety (no dendrite formation) 				
ASION POWER	Lithium-Sulfur	650	 Low temperature performance 	 Cycle life (polysulfide elimination, protect anode) 				
	Lithium-Air	1,000	 Potentially very safe 	Cycle lifeTechnical maturity				
	0 500 1,000 1,500							
	Panas	sonic today ~400						

1 Independent validation critical

SOURCE: DOE, expert interviews

Our bottom-up method has resulted in a cost projection on the low end of the range projected by industry observers

McKinsey projection
 Other projections^{1,2}

1 Other projections include: BCG (High/Low); Bain (High/Low); Lux research; Pike Research; IHS; Deutsche Bank; ICF; NAS; Bloomberg New Energy Finance

2 Other projections assumed to start at \$560/kWh in 2011 if no starting cost projection is given; other projections display assumes straight line change between given projection years

SOURCE: Press search

Sized applications of energy storage could have economic impact of \$90 billion to \$635 billion per year in 2025, including consumer surplus (1/2)

Sized ap	plications	Potential economic impact of sized applications in 2025 \$ billion, annually	Estimated scope in 2025	Estimated potential reach in 2025	Potential productivity or value gains in 2025
	Electric and hybrid vehicles Stabilizing electricity	20– 415 25–	 115 million passenger vehicles sold Over 1 billion vehicles in the market 	 40–100% of vehicles sold in 2025 could be electric or hybrid 	 Fuel price: \$2.80–7.60 per gallon 0.22 KWh per mile fuel efficiency for EVs
Distri- buted energy	access Electrifying new areas Frequency regulation	0- 50 25- 35	 13,000 TWh electricity consumption in emerging markets 2–70 hours per month without electricity 	 35–55% adoption with solar and battery combination 35–55% of companies in Africa, Middle East, and South Asia own diesel generators 	 \$0.75–2.10 per KWh value of uninterrupted power supply to an enterprise \$0.20–0.60 per KWh value per household
	Peak load shifting Infrastructure deferral Other potential applications (not sized)	10- 25 ~10	 60–65% rural electrification rate 1.2 billion people without electricity access 60 KWh monthly electricity requirement of average household 	 50–55% adoption based on number of people projected to earn above \$2 per day 	 \$0.20–0.60 per KWh value per household for direct lighting, TV, and radio benefits
	Sum of sized potential eco- nomic impacts	90– 635			

NOTE: Estimates of potential economic impact are for some applications only and are not comprehensive estimates of total potential impact. Estimates include consumer surplus and cannot be related to potential company revenue, market size, or GDP impact. We do not size possible surplus shifts among companies and industries, or between companies and consumers. These estimates are not risk- or probability-adjusted. Numbers may not sum due to rounding.

SOURCE: McKinsey Global Institute analysis

Sized applications of energy storage could have economic impact of \$90 billion to \$635 billion per year in 2025, including consumer surplus (2/2)

NOTE: Estimates of potential economic impact are for some applications only and are not comprehensive estimates of total potential impact. Estimates include consumer surplus and cannot be related to potential company revenue, market size, or GDP impact. We do not size possible surplus shifts among companies and industries, or between companies and consumers. These estimates are not risk- or probability-adjusted. Numbers may not sum due to rounding.

SOURCE: McKinsey Global Institute analysis

A total cost of ownership analysis shows how, in the United States, energy storage costs below ~\$250/kWh could favor BEVs adoption

1 Assumes energy usage of 240 watt hours per mile compared with 305-320 watt-hours per mile today due to e.g., light-weighting, efficient air conditioning; assumes 12,500 vehicle miles travelled per year

2 BEV = Battery electric vehicle; PHEV = plug-in hybrid vehicle; HEV = hybrid vehicle; ICE = internal combustion engine

OEM technology choices and volume targets provide insight into early positioning relative to the energy storage landscape

Company	Current behaviors	No. of projects	Target capacity '11-'15. MWh	Target units (11-15, 1,000 units
Toyota 💮тоуота	Dominant player in HEVWill continue to pursue HEV focused strategy	22	9,783	4,835
GM <u>GM</u>	Showing firm wide big commitmentPHEV is the center of the strategy	11	9,407	1,114
Volkswagen	 Plans to commercialize series of EV from 2013 Significantly investing in R&D 	17	10,533	1,298
Ford Ford	 Plans to launch Ford Focus (BEV) in 2012 Pragmatically launching EV with ICE platforms 	10	11,173	989
Honda HONDA	Leading player in HEVWill continue to pursue HEV focused strategy	7	1,958	1,501
Nissan	Showing firm wide big commitmentBEV is the center of the strategy	7	6,609	552
PSA PSA PEUGEOT CITROËN	Overall EV strategy is still in shapingWill launch its own vehicles after 2013	8	3,156	340
Renault 🔗 RENAULT	Showing firm wide big commitmentBEV is the center of the strategy	9	17,144	2,246
Daimler DAIMLER	Overall EV strategy is still in shapingTesting various suppliers and technologies	12	5,906	465
BMW	 Applying EV for small-size vehicles only 	6	3,799	337
Chrysler	Late in EV marketWill launch its own vehicles after 2013	N/A	N/A	N/A
Hyundai	ICE focusedFast following strategy	3	94	337
	All major OEMs are pursuing xEVs, but with different strategic focus and development stages commitment to xEV			

SOURCE: Expert interviews, IIT, Literature search, Team analysis

Different grid applications require different technologies

Storage power requirements for electric power utility applications

Source: ESA; team analysis

Based on projected costs, the battery opportunity is mainly in grid stability and lithium ion technology

Incumbent solution

- 0 2012
- A 2020 projected
- 2020 breakthrough

1 Battery cost only – excludes energy cost

2 Levelized cost of capacity – based on current ISO data, upside for frequency regulation is based on pay for performance 3 Breakthrough scenario not identified as technologies are early. Bringing to commercial scale would be breakthrough

Source: Sandia 2013 Electricity storage handbook; McKinsey; National grid; Bundesnetzagentur; NRGY; REE; Energy Velocity

India and China will be key markets for grid stabilization

Power Quality impact of renewables¹

(% of current installed capacity)

1 Higher impact relates to lower grid integration opportunities (few boundaries shared with other countries) and lack of hydro and natural gas generation